
Tableau Server Scalability
A Technical Deployment Guide for Server Administrators

Neelesh Kamkolkar
Product Manager, Data and Performance

Table of Contents
Executive Summary .. 3

VizQL breaks an age-old paradigm... 5

Tableau Architecture ..7

In-Memory and Live-Unifi ed Architecture .. 8

Testing Approach & Methodology .. 9

Methodology .. 9

Real workload characterization ... 11

Test Modeling Steps ... 11

Backgrounder Methodology ..12

Standardized Isolated Environment ..13

Deployment Topology ..14

Measurement & Reporting ...15

Scenario ..15

Response time ..16

Scenario throughput ..16

Active users ... 17

Results ...18

Tableau Server 10 Scales Linearly ...18

Backgrounder Results ... 22

Isolating the Backgrounder process .. 26

Backgrounder Considerations .. 28

Best Practices – DIY Scale Testing ... 28

Best Practices for Optimization in The Real World ..29

Summary .. 30

3

Executive Summary
Tableau is mission critical to many organizations. As many departments across these enterprises

realize signifi cant value from fi nding insights in their data, IT teams are working with the business

to deliver Tableau as their enterprise-wide analytics platform. As enterprises start to deploy Tableau

in this fashion, it is essential that enterprise architects and IT leaders understand how Tableau Server

scales with data, content, and users and how it can be deployed and integrated across diverse and

heterogeneous enterprise IT platforms in order to support the analytical needs of the business today and

tomorrow.

This whitepaper is targeted towards enterprise architects and technical IT leaders. It provides a deep

view into Tableau’s architecture and how it scales with increasing workloads.

We have explored and tested how Tableau Server 10 scales and how the results compare to earlier

versions of the product. In response to your requests, we expanded the scope of scalability testing to

include background workloads, in addition to user scalability.

There are a number of system factors that can impact performance and scalability of Tableau Server.

Some of the important system variables include workbook design, server confi guration, infrastructure

tuning, data environment, compute capacity, and networking. These factors are highly variable across

di� erent use profi les and deployments. The results of any given scalability test will di� er as these

variables are tuned or changed. In our attempt to mitigate and isolate variables, we ran our tests in a

closed network lab on physical machines. Our goal was to minimize variability in measurements due to

infl uences from external systems. We could then measure scalability metrics by modeling real usage of

Tableau Server.

To this end, we started by analyzing a real production deployment of Tableau Server at its peak usage,

and then modeled that usage in automated tests. This two-step approach mimics a very realistic

workload. This approach also simulates realistic variances in how actual users and backgrounder

workloads (mainly, data extracts and user notifi cations) might be exercising the system. Variances in

this context include the amount of time users wait between interactions with the visualization or the

number of backgrounder jobs being run on a schedule.

We modeled the variances as part of our tests to emulate real production conditions. We observed

that the system scaled linearly when we added more worker nodes in a Tableau Server cluster. Our

experiments pushed the server to peak load conditions beyond what we observed in the production

environment. Production environment usage tends to peak for short bursts frequently throughout the

workday. We measured load as expressed in throughput. Throughput is the amount of work that the

server is processing in a given amount of time, or put simply: transactions per second. As shown below,

we observed that throughput scaled from 4 to 18 transactions per second in our experiments. Each

bar indicates an experiment that was run on the topology described in the column header (Standalone

Server, Primary + 1 Worker etc).

4

Figure 1: Scenario throughput per second

We identifi ed the maximum number of active user loads we could push through a single server with 8

physical cores. An active user load is an automated set of operations acting against a Tableau Server.

Later in this whitepaper, we describe in detail what operations are included in an active user load. After

we measured the maximum number of active users that Tableau Server with 8 physical cores could

support, we then used that active user number as the scale unit to test whether we can linearly increase

load by adding homogenous 8 core worker nodes to the cluster.

The result: we observed that a single 8 core server can support up to 112 active users under realistic

modeled sustained peak loads. When we scaled that baseline linearly—adding four homogeneous worker

nodes with 8 cores each and a primary controller node with repository and base install only —we were

able to support 448 active users. These are simultaneous users doing work on the system, so if you

extrapolated that not all users are always using the system, you could expect to support anywhere from

500 to 10,000 users with a cluster confi guration with 8-32 cores. As we’ll see, such an extrapolation

depends upon various parameters. All other variables being equal, server sizing in context of user

numbers will rely on analytics use and data conditions. What our testing has shown is that Tableau

architecture will allow you to continue to linearly scale your user base by adding more worker nodes to

the Tableau Server cluster.

In our testing, we pushed the server to fi nd where it began to return errors or time out. This stress

testing provided an upper ceiling that defi nes the scalability and performance limits of the server.

Standalone Server

18

16

14

10

T
hr

ou
gh

pu
t

Pe
r

S
ec

on
d

8

6

4

2

0
V10 V10 V10 V10 V10

Primary + 1 Worker Primary + 2 Workers Primary + 3 Workers Primary +4 Workers

Number of Workers / Build

Linear Scaling With Workers

Repository Isolated

5

While quantifying these limits, we then continued to push the design beyond production burst load

characterization to sustained peak loads. Therefore, in practice, where a more stable state is the norm,

the platform should support more usage than suggested in this paper. You can be confi dent that Tableau

Server architecture is scalable to meet your current needs and your future growth as it scales linearly.

Each of the topologies and use cases are described in the table below. The Risk Profi le column maps to

variables such as whether the topology may be exposed to more or less risk based on various factors like

automatic fail over, exposure to hardware failure, and available headroom for peak bursts.

Table 1: Deployment topologies and use cases

 1The available head room depends on many factors and is not guaranteed

It’s important to understand these numbers in the context of the methodology and testing. To this end,

the rest of the white paper focuses on the architecture and what makes Tableau architecture unique

compared to traditional BI technologies, as well as our methodology and scalability results analysis.

VizQL breaks an age-old paradigm

If you are used to traditional business intelligence (BI) solutions or if you are new to Tableau, it may

Deployment
Configuration

Standalone Server

1 Primary + 1 Worker

1 Primary + 2 Workers

1 Primary + 3 Workers

1 Primary + 4 Workers

Simple single server deployment

Two node deployment

Three node deployment

Four node deployment

Five node deployment

High risk for availability, high resource
contention, no head room for peak

load performance challenges

High risk for availability, lower
resource contention with repository,

no headroom for peak usage

Moderate risk for availability,
lower resource contention,
improved horizontal scale,

very little headroom for peak usage

Moderate risk for availability,
lower resource contention,

 improved scale, moderate headroom
for peak usage

Lower risk for availability,
improved scaling, available headroom

for peak usage 1

Use Case Risk Profile

6

help to understand some core di� erences with how Tableau works when compared to traditional BI. We

have challenged the fundamental premise of the “query fi rst, visualize next” approach to traditional BI.

Instead, we believe data reveals insights when explored and questioned in real-time. For over a decade,

Tableau has included patented technology called VizQL™ that combines query and visualization into

a single platform. This powerful pairing of functionality allows end users to ask limitless questions

of their data—querying, fi ltering, and analyzing – as they are visualizing their data. VizQL™ is a

foundational language in Tableau that expresses users question and actions, translating them into

queries that can be run against any data set in the enterprise or in the cloud. This technology has

matured over more than a decade of engineering investment and continues to evolve to enable the next

generation of data sources and analytic requirements.

Unlike traditional BI reports that are designed and developed with a pre-defi ned, static set of

requirements, Tableau visualizations are built for interactivity and collaboration. Users can ask any

questions of their data without the need to write complex SQL Queries or joins. Users don’t have to wait

through another cycle of the traditional software development process to get their questions answered.

Instead, they can iterate on existing visualizations and continue their analysis to answer questions

about their business or project.

With traditional BI, you may be used to load-testing static reports that meet a specifi c service

level agreement (SLA), where queries are designed to run against targeted systems with pre-built

optimizations. A static report has a fi xed scope, a fi xed set of queries, and is often optimized by a

developer, one at a time, over many weeks. While it is relatively easy to defi ne and set an SLA for a

static report, changing the report resets the entire development cycle, a limitation that is not typically

factored into the SLA.

Tableau visualizations, on the other hand, regenerate and submit new queries on behalf of the user’s

exploratory actions. Local browser caching and optimizations in VizQL that enable quick retrieval of

data can help the user stay in the fl ow of analytics instead of waiting for the results of a query.

VizQL as a language is encompassed into our VizQL server process and it works in concert with many

other distributed server processes to provide a scalable, available, secure, and reliable business

analytics platform.

7

Tableau Architecture

Tableau’s fl exible architecture is designed for scale up and scale out. It allows Tableau to be run as

an enterprise standard platform or a platform for powering cloud analytics. Tableau Server is capable

of supporting the most complex enterprise production infrastructure requirements as well as simple

departmental or workgroup level deployments.

Figure 2: Tableau Server architecture

Tableau Server follows a simple installation and confi guration process. Once installed, multiple server

processes (shown in blue in Figure 2) work together to provide services at various tiers.

The Gateway process is the component that redirects tra� c from all Tableau clients to the available

server nodes in a cluster.

Data Services is a logical grouping of services that provide data freshness, shared meta data

management, governed data sources, and in-memory data. The underlying processes that power Data

Services are the Backgrounder, Data Server and Data Engine processes.

Analytics Services, composed of the VizQL and Cache Server processes, provide user-facing visualization

and analytics services and caching services.

Content Management and Sharing and Collaboration Service are powered by the Application Server

process. Core Tableau Server functionality such as user login, content management (projects, sites,

security permissions, etc.) and administration activities are provided by the Application Server process.

Gateway

Data Services

Backgrounders
Data Server | Data Engine

Enterprise
Datacenter Open Stack VMWare

Private Cloud Public Cloud

AWS Azure
Google
Cloud

VizQL Server
Cache Server

Application Server

Analytics Services Content Management
Services

Sharing & Collaboration
Services

Repository & File Store

Windows

Base Installation (Cluster Controller | Coordination Service)

8

All of the above services use and rely on the Repository process, which contains structured relational

data like permissions, workbooks, data extracts, user info, and metadata. The File Store process enables

data extract fi le redundancy across the cluster and ensures extracts are locally available on all cluster

nodes. Under heavier loads, extract fi les are available locally across the cluster for faster processing and

rendering.

Tableau’s architecture is fl exible, allowing you to run the platform anywhere. You can install Tableau

Server on-premises, in your private cloud or data center, on Amazon EC2™, on Google Cloud Platform™,

or on Microsoft Azure™. Tableau analytics platform can also run atop virtualization platforms such

as VMware ESXi™ or Microsoft Hyper-V™. We recommend you follow the best practices for each

virtualization platform to ensure the best performance from Tableau Server.

For details on individual server processes, please review the Tableau Server administration guide.

In-Memory and Live - Unifi ed Architecture

Tableau provides true heterogeneous platform support, connecting to over 50 of the most popular data

sources from dozens of vendors. The architecture provides fl exibility for you to choose whether you

want fast in-memory analytics or drive analytics by connecting directly to live data stores. Whichever

path you choose, it is also easy to switch between live connectivity and in-memory analytics for varying

business needs or data sources..

Tableau supports in-memory analytics by extracting data into a proprietary column store called a

Tableau Data Extract (TDE) which is loaded into memory-mapped fi les for fast access. Extracts can be

created by users on Tableau Desktop or from external business processes using Tableau APIs. Tableau

Server architecture provides built-in support to ensure that the extracts your users create are updated

and fresh on an optimized schedule that you control.

Regardless of how you connect to data and bring it into Tableau Server, you must ensure you have

su� cient memory resources for data analysis, caching, extract refreshes, and other related operations.

Unlike pure in-memory tools, Tableau’s memory footprint spans your entire cluster and isn’t

accumulated on a single server. Rather, memory use is distributed across the cluster via cache servers

for externally shared query cache and other processes that store session level caches. The impact to

memory of increasing loads is thus spread across the cluster according on your workloads.

http://onlinehelp.tableau.com/v9.0/server/en-us/help.htm#processes.htm

9

Testing Approach & Methodology

Unlike most traditional load testing projects, where the target application is treated as a black box,

Tableau Server should be load-tested with su� cient understanding of its architecture. We built

Tableau Server to run anywhere: on-premise or in the cloud. It’s designed to service teams and

organizations of any size. Therefore, the default install of Tableau Server should work well for most

standard deployments. As you look to scale and deploy Tableau Server across your enterprise, you must

understand how di� erent workloads are processed and how a few simple confi guration tweaks may

improve results for your deployment scenario.

For Version 10 scalability goals, we set out to answer the following questions:

1. Does Tableau Server 10 scale linearly by adding more hardware for two common scenarios:

 • Scaling end user workload

• Scaling Backgrounder workload

2. When is it a good time to move the Backgrounder process(es) to a dedicated worker node?

3. How does Tableau Server 10 performance compare with previous releases?

Previous versions of this whitepaper focused specifi cally on end user scalability, but many customers

asked us about how to scale the Backgrounder workload. The Backgrounder workloads control how fresh

the data is (extract refreshes) and how widely analytics is consumed (subscription notifi cations).

Methodology

Improving performance and scale were primary goals for the version 10 release of Tableau Server. As

a result, developing a production-ready, enterprise-class testing methodology was a core requirement

as well. We began running the methodology described in this section on pre-release versions of v10.

During the iterative process of agile development, we discovered and fi xed nearly two dozen scale and

performance-specifi c bugs exposed by the methodology. We continued to test after the v10 release and

fi xed bugs into the 10.0.1 maintenance release (MR). This whitepaper refers generally to the v10 release

of Tableau Server throughout. However, the results of testing are based on the 10.0.1 MR. To realize the

best scale and performance benefi ts of v10, you should run the 10.0.1 MR or later in your organization.

We have continually evolved our scalability practices to gather and test for workloads that represent

realistic customer scenarios. While there are many variables that inform scalability of a deployment, the

important factors to consider as you plan your deployment are:

10

• User Impact – self-service usage and user adoption: How many users will be using analytics? How

often will users employ analytics to make an informed decision? How complex are visualizations that

users are creating?

• Data Impact - freshness, size and location: How big is your data? Where is the data located? How fresh

does the data need to be to accurately inform business decisions?

Figure 3: Analytics use and data refresh frequency matrix

To test for both of these considerations, we needed to incorporate tests where we incrementally loaded

a server with more end users while increasing Backgrounder workloads. This methodology allowed

us to study the impact of the Backgrounder workloads on end users’ quality of service. To model low,

moderate, and heavy use of analytics and the impact of isolating the Backgrounder workloads, we ran

over 400 iterations of tests in our labs across various workloads. We studied system scalability and we

also fi xed bugs that only manifested under heavy loads.

High
(every second)

7. Examples:
WW Data Exploration

Tableau Public
(US Presidential Election)

30K Views/Hour

8. Examples:
Sales Quota Dashboard,

Tableau on TV

9. Examples:
Air Traffic Controller,
Monitoring Finance,

Trade Execution

4. Examples:
Daily Store Inventory
Insurance Customer
Analysis Marketing

(Targeting)

5. Examples:
Patient Capacity

Dealer Management

6. Examples:
Support Escalation
Dashboard, Finance
Portfolio Dashboard
Fraud Investigation

1. Examples:
Engineering -

Ship Room Mortgage
Inventory

Traditional BI

2. Examples:
Who’s Hot

Sales Lead Tracking

3. Examples:
Highway Web

Traffic Dashboards

Moderate
(once an hour)

Low
(once a day)

Low
(once a day)

Moderate
(once an hour)

Data Refresh Frequency for Effective Business Decisions

A
na

ly
ti

cs
 U

se
 fo

r
 fo

r
E

ff
ec

ti
ve

 B
us

in
es

s
D

ec
is

io
ns

High
(every second)

11

To make the tests relevant in the real world, we fi rst had to gather the appropriate set of workloads to

run these tests.

Real workload characterization

For v10, we observed and characterized how a real production Tableau Server was being used during

periods of peak utilization.

To determine which workbooks to model and the workload characteristics for our testing, we analyzed

Tableau Server log fi les from a production environment of 3000 users. We identifi ed the visualizations

and workbooks that were heavily used. We calculated the usage distribution across these workbooks and

then analyzed usage characteristics. For example, we investigated the time gap between requests (aka

think time). Below are the specifi c steps we took to model the workload from the production server.

Test Modeling Steps

1. Get the production server logs from peak usage period

2. Identify the top N workbook-views by weighted average time taken on server.

3. Weighted Average = Average Response Time * Number of requests

4. Calculate the relative weights among the top N workbook-views

5. For each selected workbook-view

a. Find percentage of visualization loads with: refresh=y (this was a way to fi nd out how many users

were actively refreshing their data to get fresh data)

b. Find the top N interactions by weight

c. Calculate average think time between interactions

6. For model verifi cation:

a. Find average time between bootstraps TBB (time between tests) for the workbook-view

b Find the top N Backgrounder tasks by weighted average time-taken on server

7. Categorize the Backgrounder tra� c by di� erent tasks (e.g., subscriptions and extract refreshes)

a. Find the average time between top Backgrounder tasks and include that in the model

b. Find the number of subscriptions across various schedules

c. Find the size and type of extract refreshes (published extract to data server, workbook extract)

We used all of the above data to model a realistic workload mix that represented how real users were

using the production server during peak usage. Finally, we generated a workload-based model for

Backgrounder extract refreshes and subscriptions from our production log analysis.

12

The workload mixes are summarized in the following table.

Table 2: Workload mix descriptions

We then took each of these mixes and ran them independently in an isolated scalability lab on physical

machines with increasingly higher end user and backgrounder loads. Once the cluster was at capacity,

we continued scaling the load after adding one worker node at a time. We observed how the system

behaved during each of these experiments. Through each run we recorded the key performance

indicators, like response time, throughput, and error rates. We also recorded system metrics and

application server metrics using JMX. For each of the runs, we correlated the data and analyzed how

the system behaved under increasing workloads. Along this process, we also found and fi xed scalability

bugs as part of our agile development process.

Backgrounder Methodology

The Backgrounder server processes system-level and user-level background jobs. System-level jobs,

such as routine repository maintenance tasks, are performed by the Backgrounder. User-level jobs are

those that a user may have submitted for the system to run on behalf of the user. For example, users can

publish extracts to the server and then confi gure a recurring data refresh for the extract according to a

schedule. This set of operations creates a refresh job. The Backgrounder is the process that will review

the jobs list and execute the jobs on behalf of the user. This scenario is critical to e� ective self-service

because the user does not have to wait for an administrative department to refresh the data. However,

if the administration team managing the Tableau Server does not plan for capacity for this type of load,

Workload Name

Real Production
Server Workload

Real Production Server
Workload + New Features

Backgrounder Mix

Description How to compare to
previous versions

This workload was based on analyzing and
characterizing usage of a production Tableau
Server that services 3000 users in an organi-

zation as a mission critical application
managed by IT.

Results data from only this whitepaper are
comparable between 9.3 and 10.0 as specified here.

The results are not comparable to previous
whitepapers we've published—including the 9.0

whitepaper—since testing methodology was
significantly different.

This workload combined the above workload
with workbooks that exercised the new

features in v10.

Not comparable across 9.3 and 10.0 because 9.3
does not have the v10 features to exercise. The best

use of the results in this whitepaper should be to
inform v10 scaling characteristics.

This workload is based on production
workload analysis and models real

workbooks and schedules mirroring the
production environment.

New mix introduced in 10.0 scalability testing
whitepaper Not comparable to any prior

whitepaper results.

13

quality of service issues may result for the end user. How much you need to optimize for Backgrounder

services is a critical component of server sizing and planning. You should consider whether to separate

the Background services on another computer to isolate the workloads.

There are several simple best practices that are discussed toward the end of the paper that allow you to

separate workload processing by time of day. However, if you are running the Backgrounder on the same

computer as the Analytical Services, you may see an impact on the end user quality of service under

heavy loads due to resource sharing constraints on the server.

For this reason, we wanted to study what impact the Backgrounder has on end user scaling when it is

co-located on the same computer as the Analytics Services. In addition, we wanted to quantify how the

Backgrounder scales with increasing loads when it was isolated on its own hardware.

To study this, we used a computer with four physical cores to run the Backgrounder in isolation. We

did not run any other Tableau Server processes on the same computer. We ran the same production

modeled workload on versions 9.3 and 10.0 of Tableau Server. The workload included extract refreshes

and subscriptions so we could focus on user-level jobs. The workload included 400 subscriptions across

8 schedules. We studied the success of subscription notifi cations and also the amount of time it took for

Tableau to complete all the subscriptions.

Standardized Isolated Environment

We ran the scalability tests in our performance lab on identical physical machines with the following

specifi cations.

Table 3: Hardware specifi cation of each node in the testing environment

Server Type Dell PowerEdge R620

64 GB

Microsoft Windows Server 2012 R2 Standard 64 Bit

2.6 GHz 1x8 physical cores, hyper-threading enabled (16 logical cores)

Operating System

Memory

CPU

14

Although this table lists physical cores, we recommend that you don’t disable hyper-threading. For

consistency, with the exception of the reference here, we refer to physical core counts in this whitepaper

and always assume hyper-threading is enabled on physical machines.

Deployment Topology

Clusters are made up of one or more primary (controller) nodes and one or more worker nodes. In our

testing, the worker nodes shared the same process confi guration profi le:

Figure 4: Process confi guration

The worker process confi guration shown here is the default confi guration. You may get more or less

scalability depending on the number and types of processes you confi gure for your environment and

usage scenario.

Primary nodes are confi gured with a base installation that includes Cluster Controller, Gateway, and

Repository processes. It’s worth noting that when deployed in a core licensing scheme, this type of

primary node confi guration is not included in the core count.

We scaled the workload using load generators (TabJolt) to simulate the user workload described

previously. TabJolt is a “point-and-run” load and performance-testing tool specifi cally designed to work

with Tableau Server 9.0 or later. The fi gure below shows a logical view of the test execution.

Cluster Controller

Process
Primary

tsperf-212.perf.dev.tsi.lan

Worker 1

tsperf-213.perf.dev.tsi.lan

Worker 2

tsperf-215.perf.dev.tsi.lan

Worker 3

tsperf-216.perf.dev.tsi.lan

Worker 4

tsperf-217.perf.dev.tsi.lan

Gateway

Application Server

VizQL Server

Cache Server

Search & Browse

Backgrounder

Data Server

Data Engine

File Store

Synchronizing Synchronizing Synchronizing Synchronizing

Repository

Refresh Status Active Busy Passive Unlicensed Down Status unavilable

http://www.tableau.com/about/blog/2015/4/introducing-tabjolt-point-and-run-load-testing-solution-tableau-server-38604

15

Figure 5: The logical view of the test environment

We collected data from each of the test iterations to analyze, but before we jump into the results, let’s

understand some of the metrics and the defi nitions.

Measurement & Reporting
We measured a number of metrics to understand hardware performance and scalability, including

system metrics for CPU, memory, disk. We also measured performance and scalability metrics such as

response times, throughput, error rates, run duration, and others.

To understand the data discussed in this whitepaper, let’s quickly review some defi nitions.

Scenario

Scenario is the top level user activity on the server. In the prior versions of the paper, we were focused

on visualization load and interact times when server had guest access enabled. In this release of the

paper, we have expanded the workloads to include Application Server Services (like login) and other

services. The end users go through a series of steps based on the production workload modeling which

we simulated using a customized version of TabJolt.

primary

tabjolt

db

worker 1

worker 2

worker 3

worker 4

16

Figure 6: Scenario testing algorithm

The reported response times in this paper are larger than more simple load and interaction models

because our test models include the time required to complete the scenario. The response time is

measured and reported for a transaction from the client’s perspective. This means the scenario

describes the actual end user’s perspective, including environmental network variables such as latency.

Response time

Response time is measured as the number of seconds it takes the server to respond to the end user

request. Consider this example: a user signs in to server, navigates to a visualization, changes a fi lter

on that visualization, waits for the visualization to update and render, then analyses the visualization

(think time). The total “wall clock” time from the time the user logins to server to the end of the user

think time is reported as a response time for that iteration of the scenario.

Scenario throughput

Scenario throughput is the number of successful scenarios completed per second (TPS). We calculated

the scenario TPS by running scenarios for an hour on a given topology at the computational limit of the

system. The total number of scenarios divided by the number of seconds in an hour (3600) is the TPS.

For example running our scenarios on an 8 core Tableau Server 10 for the duration of the test run

completed 16,372 scenarios. This translates to a TPS of about 4.5 (16,372/3600). These experiments

pushed the server to far higher loads than what we observed in production, where the TPS was < 1.

1 For each user
2 [
3 Select a workbook per assigned weight
4 For each workbook
5 [
6 Login
7 Navigate to view
8 Load View
9 For each view
10 [
11 Exercise (1...N) interactions
12 Wait tink time
13]
14]
15 Wait for think time
16]

S
ce

n
ar

io
 r

es
p

o
n

se
 t

im
e

17

The signifi cant increase in experimental data is because we are pushing the server to its limits trying

to understand ultimate performance capacity for the chosen hardware and scale units.

However, production deployments experiences load bursts during peak usage and users are generally

a lot slower than an automatic test execution framework. Keeping in mind the di� erence, Tableau

Public, for example, delivers massive scales of approximately ~12 visualization loads (referred to as

impressions) per second which translates to over 7+million impressions of Tableau Visualizations

per week.

Active users

Active users is a metric that measures the number of users that are simultaneously using Tableau Server

in a peak one-hour time window. Scenarios now include log-in, visualization load, user interactions,

search, and other actions. We defi ne active users as users that are performing any of these sorts of

actions during a peak one-hour time window.

To fi nd out how many active users our installation of server would support, we started by determining

how many users a single server could sustain without degradation in response time, more than a 2%

error rate (Tableau Server HTTP errors), or greater than 80% CPU utilization.

Based on our production workload characterization, we assigned weights to specifi c workbooks. We then

spawned a thread (a virtual user) which would select a random workbook based on the weights assigned

to it, and then complete the entire scenario described earlier. At the end of the scenario, the thread

would wait for a specifi ed think time. At the end of this period, the thread would complete its iteration

and exit. During the test, we measured the scenario throughput, response time, error rates, CPU and

memory usage amongst other metrics. We kept increasing the number of active threads as long as the

CPU remained below 80%, the error rate was below 2% and the response time had not degraded. When

one of these thresholds was breached, we considered that the sweet spot for the number of active users

for that topology would reasonably support.

To validate that server scales linearly, we found the sweet spot for a single machine, then linearly

increased the number of virtual users to the next increment and validated that our preset conditions

were still met under the new load.

18

Results
Now that we’ve seen how we perform test execution, the deployment we used, and the metrics, let’s

review the results.

Tableau Server 10 Scales Linearly

Our fi rst question was how does Tableau Server 10 scale? With increasing user loads, we observed that

Tableau Server 10 scales linearly with load by adding more worker nodes to the cluster. The fi gure below

shows the number of user scenarios that were completed per second with increasing workers.

Figure 7: Scenario throughput per second

Each column shows the cluster topology. The further-most left column shows the single-server setup.

The second column shows the primary/worker cluster confi guration with a single worker. For each

remaining column we add a single worker node, as described earlier. The height of the bar shows the

average scenario throughput per second (TPS). The TPS represents the amount of work the server is

taking on. As shown, TPS increased linearly as we added more worker nodes. We observed that as we

increased the loads on the cluster, the CPU utilization across the cluster was averaging about 80%

The fi gure below shows the CPU utilization across the cluster with increasing loads with a 95%

confi dence band.

Standalone Server

18

16

14

12

10

S
ce

na
ri

o
T

hr
ou

gh
pu

t
Pe

r
S

ec
on

d

Build

V10

8

6

4

2

0
V10 V10 V10 V10 V10

Primary + 1 Worker Primary + 2 Workers Primary + 3 Workers Primary +4 Workers

Number of Workers / Build

19

Figure 8: CPU utilization with increasing loads across the cluster

As Figure 8 shows, adding more workers to distribute CPU load across the cluster optimizes the system

by providing some headroom for load bursts. In the case where fewer worker nodes were confi gured in

a given cluster, the CPU utilization was comparatively higher than clusters with more workers. In these

lower-worker node cases, compute bound processes are competing for the limited resources. During

these tests, we observed the error rates from the server and they were well within the 2% goal we had

set out as part of the methodology. Depending on your workloads, you may see higher error rates (lower

quality of service) when clusters are constrained to fewer machines and/or are limited in capacity.

Our next question was how does Tableau Server 10 compare to Tableau Server 9.3 with the same testing

methodology?

The results: under the same methodology run on each the version, Tableau Server 10 throughput

improved when compared with Tableau Server 9.3.

Standalone Server

90

80

70

60

50

C
P

U
 %

Build

V10

40

30

20

10

0
V10 V10 V10 V10 V10

Primary + 1 Worker Primary + 2 Workers Primary + 3 Workers Primary +4 Workers

8 Cores

8 Cores
16 Cores

24 Cores 32 Cores

Number of Workers / Build

20

Number Of Workers / Build

Standalone Server Primary + 1 Worker Primary + 2 Workers Primary + 3 Workers Primary + 4 Workers

V93 V 10 V93 V 10 V93 V 10 V93 V 10 V93 V 10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

S
ce

na
ri

o
T

hr
ou

gh
pu

t
P

er
 S

ec
on

d

Im
pr

ov
m

en
t:

 3
.0

7%

Im
pr

ov
m

en
t:

 3
.0

2%

Im
pr

ov
m

en
t:

 3
3.

4
2%

Im
pr

ov
m

en
t:

 1
9

.0
1%

Im
pr

ov
m

en
t:

 5
7.

21
%

Build
V93

V 10

Figure 9: Comparing Scenario Throughput per second 9.3 vs 10.0.1

In Figure 9, scenario throughput for Tableau Server 9.3 (orange bars) is compared to the scenario

throughput for Tableau Server 10 (blue bars). Each pane shows the confi guration of the cluster topology

as described by the column header. As noted earlier, when we added more nodes to the cluster, Tableau

Server 10 not only scaled linearly it also scaled scenario throughput better when compared with Tableau

Server 9.3.

21

As you compare versions, understand that the only appropriate comparison we can make is by

comparing the two versions with the improved testing methodology that captures real-world user

scenarios. For this reason, comparing Tableau Server 10 results to our prior whitepaper results is not an

accurate comparison as the testing methodology has changed signifi cantly.

While it’s important to observe throughput, we wanted to make sure the end user response time for the

entire test scenario was adequately performant and not failing under increased loads.

Figure 10: Comparing average scenario response times (seconds): 9.3 vs 10.0.1

Primary + 4 Workers

V93 V93 V 10

32 Cores

32 Cores

Number Of Workers / Build

Standalone Server Primary + 1 Worker Primary + 2 Workers Primary + 3 Workers

V93 V 10 V93 V 10 V93 V 10 V93 V 10 V93

0

5

10

15

20

25

30

35

40

A
vg

. R
es

po
ns

e
T

im
e

(S
ec

s)

8 Cores

8 Cores 8 Cores

8 Cores

16 Cores

16 Cores

24 Cores

24 Cores

Build
V93

V 10

22

In the Figure 10, the height of the orange bar shows the average scenario response time for version 9.3.

The height of the blue bar shows the same metric for version 10.0.1. As we increased the end user loads

on the cluster hosting version 9.3, we observed incremental increases in response times. Tableau Server

10, on the other hand, showed a more consistent response time as we continued to add virtual users to

the system. This shows that Tableau Server 10 delivers better performance and responsiveness to end

users relative to Tableau Server 9.3 for the same workloads.

Some of the improvements we observed in Tableau Server 10, with relatively consistent and stable

response times under increasing loads, were the result of improvements we made to the cache

components. Specifi cally, we did work in v10 to optimize caching for the bootstrap response scenario.

The bootstrap scenario is the fi rst call made to initialize and cache data for a user session. Without

caching, earlier version of Tableau Server would compute and save the bootstrap data for every

subsequent request, even if they were very similar or identical. In version 10, we perform smart caching

operations for this scenario. These improvements made Tableau Server 10 more e� cient by allowing

it to process more user load while maintaining good response times. However, the server is now doing

more work, as we observed earlier in the increased throughput.

All of the results above were observations on how Tableau Server scaled with increasing use of analytics

by end users. As more end user workload increases on the server, you should ensure you have su� cient

capacity by adding more worker nodes to your cluster to deliver a good quality of service experience to

the end users.

The next set of questions centralized around user impact as a result of where and how Backgrounder is

confi gured. Specifi cally, what is user impact of hosting Backgrounder processes on the same computer

as the Analytics Services (VizQL Server) vs isolating Backgrounder processes on a di� erent computer.

We discuss those results in the section that follows.

Backgrounder Results

First, we wanted to quantify the impact of running the Backgrounder in our default single-server

installation. What is the impact of this scenario on the end users and scalability in general? We ran our

workload experiments and recorded the TPS on a single Tableau Server deployment. We then tested

workloads on clusters, building out the cluster topology by adding workers.

23

Figure 11: Impact to end user scalability of co-located Backgrounder and VizQL services

Figure 11 shows the results of two testing scenarios. The green bars represent the test scenario where

we ran a VizQL-only workload. The VizQL-only workload simulates end user workloads. The blue

bars represent the test scenario where we then added a fi xed amount of backgrounder workload to

the VizQL workload on the same cluster. We then recorded the changes in the TPS for the end users’

workload across the two scenarios. We knew this would have an impact because both VizQL Server

and Backgrounder are compute intensive workloads, but our intent was to measure this impact for the

specifi c workloads.

We observed between 2-12% reduction in the overall end user scenario throughput. This reduction

shows that the ability of the cluster to service end users is impacted by the cost of processing the

backgrounder workload. Extrapolating this data shows that if the cluster was servicing 100 end user

scenarios per unit of time, then the addition of the constant backgrounder load reduces capacity to

88 user scenarios in the same unit of time. This reduction in throughput could translate to signifi cant

impact to end user scalability and/or the quality of service depending on several factors such as the

workloads, peak load bursts, hardware limitations, and infrastructure variables.

Standalone Server

18

20

14

16

12

10

En
d

U
se

r
S

ce
na

ri
o

T
hr

ou
gh

pu
t

Pe
r

S
ec

on
d

8

6

4

2

0

V10 - VizQL Only

V10 - VizQL Only
Build

V10 - VizQL + BG V10 - VizQL Only V10 - VizQL + BG V10 - VizQL Only V10 - VizQL + BG

-2.0%

-10.3%

-12.5%

Primary + 2 Workers Primary +4 Workers

Number of Workers / Build

V10 - VizQL + BG

24

This test illustrates the importance of properly resourcing hardware according to Tableau Server

workload planning. Running Tableau Server on under-powered or constrained hardware may result in

reduced throughputs, failed backgrounder jobs, delays in subscription notifi cations and/or end user

errors manifesting as performance issues. When such conditions occur, consider expanding the cluster

to isolate backgrounder workloads on dedicated hardware. By isolating the Backgrounder service, you

will free up competing processes that are compute bound that would otherwise be vying for the same

resources when co-located on the same computer.

Let’s review that impact on a specifi c workload for subscriptions when backgrounder is co-located with

VizQL server and when it’s isolated on its own machine.

Figure 12: Improvements in subscription notifi cation

In Figure 12 each pane shows the Tableau Server cluster topology in 9.3 (orange) and 10 (blue) while each

bar represents the number of subscriptions notifi cations attempted and the number of notifi cations

completed successfully. In each iteration, we increased the number of worker nodes in steps of 0, 2, 4.

and each worker node had only one Backgrounder process confi gured. (Omitting 1 and 3 worker testing

did not compromise the fi delity of results we sought.) We limited the Backgrounder process to one per

worker node to establish a consistent measurement for comparisons.

Standalone Server

200

250

300

350

400

150

100

50

S
ub

sc
ri

pt
io

ns
 A

tt
em

pt
ed

S
ub

sc
ri

pt
io

ns
 F

in
is

he
d

400

300

200

100

0

0

V10 - VizQL Only

V93 - VizQL Only
Build

V10 - VizQL + BG V10 - VizQL Only V10 - VizQL + BG V10 - VizQL Only V10 - VizQL + BG

Primary + 2 Workers

77%
100% 53%

100%

74%

100%

Primary +4 Workers

Number of Workers / Build

V10 - VizQL + BG

25

As we increased the backgrounder subscription load, Tableau Server 10 was able to complete all

the work that was submitted. In the same tests, Tableau Server 9.3 would begin to saturate and

some subscriptions failed. This behavior could be exacerbated in an under-resourced and over-

loaded topology. In addition, we observed that Tableau Server 10 could take on increasing number of

subscriptions as more workers were added to the system. An improvement in Tableau Server 10 that

explains the above observation has to do with the introduction of image caching for notifi cations. This

feature allows the Backgrounder to do much less work for the same tasks tied a schedule. In scenarios

where the same work is being executed on the same schedule, Tableau Server 10 now caches the results

from the fi rst execution and serves the results to subsequent requests for the same workload. This

means the same work is completed more e� ciently.

For the subscriptions that use the same workbooks on same schedule, we saw the time needed to

complete the subscription was reduced between 60-90% compared to 9.3. Figure 13 illustrates this

improvement.

Figure 13: Subscription run time (time to completion): 9.3 vs 10

Standalone Server

S
ub

sc
ri

pt
io

ns
 R

un
T

im
e

(S
)

V93 - VizQL Only

V93 - VizQL Only

Build

Primary + 2 Workers

-62% -86%
-90%

Primary +4 Workers

Number of Workers / Build

V10 - VizQL + BG

V10 - VizQL + BG V93 - VizQL Only V10 - VizQL + BG V93 - VizQL Only V10 - VizQL + BG

2K

3K

4K

5K

6K

7K

8K

9K

10K

11K

1K

0K

26

What this means, is that any notifi cations to the same workbook on the same schedule will take much

less time to complete. However, if you have notifi cations to di� erent workbooks, or user fi lters are

set, the subscriptions will take processing and compute time before the notifi cation can be delivered

to the user. Di� erent workbooks and user fi lters require that Tableau Server runs the entire end user

visualization pipeline, which includes data query and data visual processes for each workbook or

fi ltered view.

The benefi t of subscriptions is that they provide business users with the data they care about in a timely

manner. E� ective extract refreshes help your organization make good decisions based on appropriately

fresh data. Since the Backgrounder process manages both of these critical functions, planning your

subscriptions schedules such that duplicate work is tied to the same schedule can ensure benefi ts of

the cache.

Isolating the Backgrounder process

With the Backgrounder process isolated on its own worker node, we ran the same subscription

experiments. We observed that the Backgrounder worker node was able to complete 400 subscriptions

on a single 4 core machine. This is same number of subscriptions that we recorded when a single

Backgrounder process was co-located with each VizQL worker across 4 worker machines.

The important lesson here is that while the Backgrounder process itself scales, isolating the process

delivers similar scale but does not impact the end user quality of service. The Backgrounder process

is single-threaded and is designed to complete jobs as quickly as possible. Given this design, a

Backgrounder process will consume a full core when it has work to do. On an isolated machine, the

aggressive compute usage of the Backgrounder process will not interfere with other user-facing Tableau

services.

27

S
ub

sc
ri

pt
io

ns
 R

un
T

im
e

(S
)

S
ub

sc
ri

pt
io

ns
 F

in
is

he
d

S
ub

sc
ri

pt
io

ns
 A

tt
em

pt
ed

V93BG

V93BG

4 BGs 6 BGs 8 BGs 4 BGs 6 BGs 8 BGs

V10BG

Build

 Build / Number of Backgrounders

V10BG

0K

5K

10K

15K

20K

0

100

200

300

400

0

100

200

300

400

Figure 14: Adding Backgrounder processes to a 4 core computer: 9.3 vs 10

As shown in Figure 14, adding Backgrounder processes to a single 4-core computer enabled Tableau

Server 10 (blue) to complete subscriptions in signifi cantly less time when compared to 9.3 (orange).

However, continuing to add Backgrounder processes on a computer that is physically limited by cores

has a negative impact. As shown, adding 8 Backgrounder processes to a computer bound by 4 cores

slows completion time. This is due to the single-threaded design of the Backgrounder.

Lastly, in our experiments where we tested extract refreshes on worker nodes running isolated

Backgrounder processes, we observed that Server 9.3 and Server 10 were comparable. Both versions

completed the same number of extract refreshes in about the same amount of time. An important

detail to consider as you scale for extract refreshes is that extract refreshes are highly dependent on

external databases for adequate performance. (In our tests, we refreshed data using workbooks that

used published extracts from MS SQL Server.) Extract refresh performance and scale is highly reliant

on the database hardware specifi cations. In addition, data characteristics, such as the types of joins and

28

the complexity of the queries that are executed will impact scale. For this reason, you should ensure

that extract refreshes and notifi cations have su� cient capacity available to them to complete their work

before end user peak loads are expected on the system.

Backgrounder Considerations

The Backgrounder process does much of the work related to extract refreshes, subscriptions, and other

scheduled background jobs. These jobs don’t compete with capacity if you schedule them to run at o� -

peak hours. When it is not possible, you should plan for and add capacity needed for your backgrounders

and other non-user-facing workloads to run along with user-facing processes.

Backgrounders are designed to consume an entire core’s capacity per process because they are designed

to fi nish the work as quickly as possible. When you run multiple Backgrounder processes, you should

consider the fact that a Backgrounder process may compete for computational and network resources

with other services that are running on the same machine.

Best Practices – DIY Scale Testing

If you are looking to conduct your own load testing to fi nd out how Tableau Server scales in your

environment with your workloads, here are some best practices.

1. Don’t treat Tableau Server as a black box. Often, traditional load testing treats an application under

test as a black box. This assumes no tuning/confi guring or adjusting the deployment to meet load

conditions. Tableau is designed to scale up and scale out and it helps to inform scalability testing by

understanding Tableau architecture to drive the outcomes that work for your situation

2. Pick the right tool for testing. Tableau Server is a workhorse and does complex and resource-

intensive work. There are many tools available to drive loads on Tableau Server. While Tableau doesn’t

directly support any of these tools, you should pick the one that allows for the greatest ease of use

and represents your production environment the closest. Another consideration is ensuring you have

the appropriate expertise in tooling and in Tableau Server available when doing load testing. We

used Tabjolt for our testing. TabJolt is a point and run load testing tool based on JMeter and built to

eliminate script maintenance while working with ad-hoc analytics solutions like Tableau.

3. Select representative workbooks. Often when we hear about performance or scale issues, it is because

the workbooks being used are not authored with best practices in mind. If a single-user test on your

workbooks shows a very slow response time, then you should optimize those workbooks before you

embark on a load-testing project. Just like you wouldn’t keep a poorly performing dashboard in a

production environment, you wouldn’t want to use it for testing.

https://github.com/tableau/tabjolt

29

4. Start with the defaults. When testing workbooks using live connections remember that with the

introduction of parallelization in Tableau Server 9.0, you may not need as many VizQL servers as

you may have deployed in previous version of Tableau Server. Start with the new 2-process default

confi guration and scale up incrementally as needed.

Best Practices for Optimization in The Real World

In addition to a system that is optimally designed, there are best practices that can be used to greatly

improve performance and reduce average response time.

• Design your workbooks for beauty and performance. Most often when we hear customer suggest that

their workbook is slow it’s because it was designed without performance in mind. If a single user load

time is slow, the workbook response times will be slow under heavy loads as well. While adopting a

culture of analytics, providing avenues and teams where stewards can help users design great looking,

insightful workbooks that perform well, will enable you to ensure you build and deliver scalable

visualizations as well. Designing E� cient Workbooks is whitepaper that dives deeper into building

e� cient dashboards that perform well.

• The total response time an end user experiences is a combination of many things, but it’s primarily

time taken by Tableau combined with data retrieval. If your backend databases are slow, or your query

times are slow, the visualizations will be slow. It’s important to factor in your data strategy. Often data

sources in an organization are curated and shared. You must ensure that you are delivering data that

matters in a way that the data can support business user productivity. This means optimizing data.

For example, you should be ensuring optimal joins and relevant levels of aggregation for fast queries

against indexed tables. Having a good data hygiene process is important to keep your visualizations

and performing well.

• Use Tableau data extracts. If your database queries are slow, consider using extracts to increase query

performance. Extracts are stored locally on the server and run in memory so that users can access the

data quickly without making requests to the database. Extracts can be fi ltered and aggregated easily

and are ideal when users don’t need row-level detail. Extracts signifi cantly improve response time and

enable your users to get into the analytic fl ow.

• Schedule updates during o� -peak times. Often data sources are being updated in real time but users

only need data daily or weekly. Scheduling extracts for o� -peak hours can reduce peak-time load on

both the database and Tableau Server. In addition, you could add additional Backgrounders on existing

machines or use dedicated hardware if you have su� cient core capacity. Consider this option for faster

completion of extracts.

https://www.tableau.com/learn/whitepapers/designing-efficient-workbooks

30

• Avoid ‘expensive’ operations during peak times. Publishing, especially large fi les, is a very resource-

consuming task. It’s often easy to infl uence publishing behavior: ask users to publish during o� -peak

hours, avoiding busy times like Monday mornings. To learn when your servers are being used the most,

use the Administrator Views, then create policy based on actual usage. Depending on how you have

confi gured Tableau Server 10.0, publishing also means that a copy of the extracts is made on each of the

cluster nodes for high availability. Doing this during o� -peak times will also allow you to maximize

network bandwidth.

• Cache views. As multiple users begin to access Tableau Server, the response time will initially increase

due to contention for shared resources. With caching turned on, views from each request coming into

the system will be cached and then rendered more quickly for the next viewer of the same dashboard.

• The Cache Server process, introduced in Tableau Server 9.0, can be warmed up by scheduling an

email of common views following completed extract refreshes. That way future viewers are using the

cached data from your earlier request. You may use other approaches to warm up the cache, such as an

automated tool that loads up key visualizations that regularly see high tra� c. The user can manually

invalidate the external query cache at any time to refresh their data from the data source. This action

also forces a regeneration of the cache. This way, the users can always get a fresh copy of the data

regardless if a version is already in cache.

Summary
Tableau Server 10 is an enterprise class, scalable platform that can support any size organization. It can

run on-premise in private clouds or public clouds and can scale linearly with added worker capacity.

While each environment will have its own unique characteristics and confi guration, Tableau Server’s

architecture will allow you to scale your deployments to meet your user demand needs.

While your scalability and performance mileage may vary and these aren’t specifi c recommendations

for all situations, Tableau Server 10 can support teams or departments between 25 to 100 users on 8-16

core capacity. As you look to support teams of 100 to 1000 users, depending on your usage and data

freshness needs you may fi nd 16 to 24 cores are good to get you started. If you need to support more

users or additional background load, you could grow your deployment beyond 32-64 cores supporting

larger and larger workloads by adding additional worker nodes to expand to even cloud scales.

http://onlinehelp.tableau.com/current/server/en-us/adminview.htm

About Tableau
Tableau helps people transform data into actionable insights that make an impact. Easily connect to

data stored anywhere, in any format. Quickly perform ad hoc analyses that reveal hidden opportunities.

Drag and drop to create interactive dashboards with advanced visual analytics. Then share across your

organization and empower teammates to explore their perspective on data. From global enterprises to

early-stage startups and small businesses, people everywhere use Tableau’s analytics platform to see and

understand their data.

Resources

Tableau for the Enterprise: An IT overview

Server Admin Guide

Tableau Server 10.0 High Availability: Delivering mission-critical analytics at scale

Tableau on Amazon Web Services

http://www.tableau.com/sites/default/files/media/whitepapertableauforenterprise_0.pdf
http://onlinehelp.tableau.com/current/server/en-us/admin.htm
http://www.tableau.com/learn/whitepapers/tableau-server-high-availability-delivering-mission-critical-analytics-scale
http://www.tableau.com/amazon-web-services

